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$whoami
● Master’s Student in CS @ ETH Zurich, bachelors 

from BITS Pilani
● Contributor to Theano
● Working on DL for Astronomy and GANs
● space.ml, Anatomy of Deep Learning Frameworks

http://space.ml/
http://www.kdnuggets.com/2017/02/anatomy-deep-learning-frameworks.html


What’s this talk about?
● Understanding the internals of DL frameworks
● Common components of all DLFs
● Old wine in a new bottle
● How you could DIY



Why do you need to know this?

● All DL work done in DLFs, no vanilla code
● TF, Keras, Theano backbone of DL research
● Any sufficiently advanced technology is 

indistinguishable from magic  --Arthur C. Clarke
● Not voodoo
● Simple concepts, complex implementation details
● Once you know it, you get more control



Frameworks Galore



Many names, same concepts

● Why do we have so many frameworks?
– Because, why not?
– Theano – MILA, Torch – FB, CNTK – MS, TF – Google…
– Does something well

● Are they all really that different?
– NO
– We’ll cover this in the talk



Bare-bones DL Framework
● Components of any DL framework

– Tensors
– Operations
– Computation Graph
– Auto-differentiation
– Fast and Efficient floating pt. Operations, GPU support 

● BLAS, cuBLAS, cuDNN



Example in TensorFlow
● Tensor: tf.Tensor
● Ops: tf.Operation
● Graph: tf.Graph
● Autodiff: tf.gradients et al.
● CuDNN, BLAS – See install notes

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Operation
https://www.tensorflow.org/api_docs/python/tf/Graph
https://www.tensorflow.org/api_guides/python/train#Gradient_Computation


Example in Theano
● Tensor: theano.tensor
● Ops: theano.*
● Graph: theano.gof.graph
● Autodiff: theano.tensor.grad
● CuDNN / BLAS:  GPU Backend

http://deeplearning.net/software/theano/library/tensor/index.html
http://deeplearning.net/software/theano/extending/graphstructures.html#op
http://deeplearning.net/software/theano/extending/graphstructures.html
http://deeplearning.net/software/theano/tutorial/gradients.html#tutcomputinggrads
http://deeplearning.net/software/theano_versions/0.8.X/tutorial/using_gpu.html


Tensors
● Tensors – Mathematical objects
● Simply, N-Dimensional Arrays, like numpy.ndarray
● lingua franca in DL frameworks
● Data → Input Tensors → DNN → Output Tensors → 

Results
● Clean abstraction, allows use in different scenarios
● DNN sees only tensors, not images, audio, text...



Images to Tensors

A BMP Image



RGB Channels



3D Tensor



Other Examples
● Video – 4D Tensor (A video frame is an image)
● Words – Word2Vec
● Characters – 1-hot embeddings
● Audio – spectrograms .etc



Operations
● Operations on Tensors
● NNs are composition of Operations!
● Could let users implement

– Suboptimal, prone to bugs, developer headaches
– Can’t extend to new hardware and software versions

● Makes sense to support basic and widely used ops
– Add, sub, mul, div, exp, log
– Convolution, pooling, lstm units



Example: Sigmoid layer

Sigmoid = 1 / (1 + np.exp(-1 * (np.dot(w.T,x)))



Computational Graph
● Combine multiple operations
● Graphical representation
● Similar to ASTs (Abstract Syntax Trees)



Need
● Helps to get a bigger picture of the network
● Allows us to run auto-diff on the network
● Helps in allocating resources to get best perf.
● Allows optimizations (two nodes with *2 → one 

with *4)
● Encapsulation, clean API
● Orchestration of operations



Make DNNs Learn Again!
● Beefed up backpropagation
● More general, easier to understand
● Calculus on computation graphs
● Chain Rule
● Symbolic differentiation and Autodifferentiation



Symbolic Differentiation
● Analytically find the gradients of each operation
● Chain Rule (and others)

● CAVEAT: Cannot calculate for all fn, too difficult, impoosible 



Autodifferentiation
● Another approach to tackling the chain rule. 

– Compute the gradient for each Op (grad method)
– Traverse the comp. graph, 
– collect gradients for each Op
– Combine to get gradient

● Can be done in both forward and backward 
direction



Example

cf. http://colah.github.io/posts/2015-08-Backprop/



INTERMISSION



Aside: Subgradients
● ReLU, Leaky ReLU et al, not differentiable

● Can’t differentiate at x = 0, approximate it!
● Subgrad: approximation to grads, greatest lower bound



Simple Example



Aside II: RNNs
● RNNs have outputs of a layer as the input

– h(t +1 ) = f(x, h(t))

● How do you run backprop?
– Loop-the-loop
– Multiply over and over again :(

● Results in Exploding / Vanishing Gradients



Backprop on RNNs
● Loop unrolling

● Are we done?
● NO, can still cause under and overflows
● Solution: Gradient Clipping (thresholds)



Time to get dirty*

* with the details ;)



Recap: DL Framework Components

● Components of any DL framework
– Tensors
– Operations
– Computation Graph
– Auto-differentiation
– Fast and Efficient floating pt. Operations, GPU support 

● BLAS, cuBLAS, cuDNN



Functions or Classes?
● Should we define Ops as functions or classes?
● Functions → lesser memory footprint → logical mapping
● Classes → better encapsulation

– Metadata like shape, size
– Forward op and backward op have similar acces

● OOP → helps in scaling and extending
●  But higher memory footprint
● Memory is cheap, dev time isn’t!
● Classes, FTW



Tensor Object
● Need to convert data to tensors and back
● Efficient storage of arrays
● Meta-data: shape, type, average, min, max
● Splicing and views
● Support for sparse matrices (ex. ReLU and 

variants)
● Integrity checks, GPU transfer, Compression



Op class
● Input sanity checks
● Optimized implementation
● Gradient Computation
● Shape of output tensor (sanity checks)
● Implementation in C++ / CUDA
● GPU / CPU?
● Parents and Children Ops – Useful for Computation 

graph



Graph Object
● Container class, refs to ops, and tensors
● Graph Traversal routines
● Device allocation and deallocation routines
● Methods to send inputs and get back results from 

devices
● Method to run autodiff



autodiff
● Don’t reinvent the wheel
● List: http://www.autodiff.org/?module=Tools
● Some examples in Python:

– CGT: http://rll.berkeley.edu/cgt/
– Autograd: https://github.com/HIPS/autograd
– ad: http://pythonhosted.org/ad/

● Theano and TensorFlow use their own



Multicores? GPUs? Embedded?

● Laptop PC v. JBOGs v. Raspberry Pi
● Different hardware, different strengths
● Power-efficiency, Parallelism, Network Comm.
● Ex. Rpi

– Low Power and Memory
– Has GPU and supports HD video!

● Need to support multiple hardware opaquely!
● Use optimized numerical libraries

http://www.autodiff.org/?module=Tools
http://rll.berkeley.edu/cgt/
https://github.com/HIPS/autograd
http://pythonhosted.org/ad/


BLAS / LAPACK
● BLAS – Basic Linear Algebra Subprograms
● LAPACK – Linear Algebra PACKage
● Written in Fortran or C, highly optimized!

– Sometimes even assembly

● Can exploit multicore capabilities
● NumPy uses them
● Use routines for matrix ops instead of coding them



CUDA , cuBLAS
● CUDA – GPU Programming API
● Can be accessed in C, C++, Python (pycuda)
● Very low level
● Memory management, scheduling upto you
● Can lead to reduced perf.
● cuBLAS – BLAS in GPUs, very similar to BLAS API
● ALT: OpenCL



cuDNN
● Library with DL primitives
● eg. Convolution, LSTMs 
● Built on top of CUDA
● Most DL frameworks use this in the background
● High-level, Highly Optimized
● Vanilla CUDA for initialization, cuDNN for compute



RECAP: It’s all connected
● Tensors → For representing data
● Ops → To represent operations

– Tensors → Ops → Tensors

● Computation Graph: Composition of Ops
– Input → Op1 → Op2 → Op3 … → OpN → Output

● Autodiff: generalized backprop
● BLAS / CUDA / cuBLAS / cuDNN



What next?
● Know why your net is not training fast enough
● Go through the dev-docs, theano is pretty good
● DIY DLF, for fun and hopefully profit!
● Chutney: The IDLI DL Library ? 



Questions?



Thanks!
● Malai

– For proof-reading the article
– Organizing and moderating this talk

● IDLI – Wonderful group, awesome discussions
● Fred Bastien: Theano Lead Dev
● Colah: InkScape guru _/\_
● The DL community



Thanks!
Dankeschon!
Dhanyawaad!

Nandri!
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