
The Anatomy of
Deep Learning
Frameworks*

*Everything you wanted to know about
DL Frameworks but were afraid to ask

$whoami
● Master’s Student in CS @ ETH Zurich, bachelors

from BITS Pilani
● Contributor to Theano
● Working on DL for Astronomy and GANs
● space.ml, Anatomy of Deep Learning Frameworks

http://space.ml/
http://www.kdnuggets.com/2017/02/anatomy-deep-learning-frameworks.html

What’s this talk about?
● Understanding the internals of DL frameworks
● Common components of all DLFs
● Old wine in a new bottle
● How you could DIY

Why do you need to know this?

● All DL work done in DLFs, no vanilla code
● TF, Keras, Theano backbone of DL research
● Any sufficiently advanced technology is

indistinguishable from magic --Arthur C. Clarke
● Not voodoo
● Simple concepts, complex implementation details
● Once you know it, you get more control

Frameworks Galore

Many names, same concepts

● Why do we have so many frameworks?
– Because, why not?
– Theano – MILA, Torch – FB, CNTK – MS, TF – Google…
– Does something well

● Are they all really that different?
– NO
– We’ll cover this in the talk

Bare-bones DL Framework
● Components of any DL framework

– Tensors
– Operations
– Computation Graph
– Auto-differentiation
– Fast and Efficient floating pt. Operations, GPU support

● BLAS, cuBLAS, cuDNN

Example in TensorFlow
● Tensor: tf.Tensor
● Ops: tf.Operation
● Graph: tf.Graph
● Autodiff: tf.gradients et al.
● CuDNN, BLAS – See install notes

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Operation
https://www.tensorflow.org/api_docs/python/tf/Graph
https://www.tensorflow.org/api_guides/python/train#Gradient_Computation

Example in Theano
● Tensor: theano.tensor
● Ops: theano.*
● Graph: theano.gof.graph
● Autodiff: theano.tensor.grad
● CuDNN / BLAS: GPU Backend

http://deeplearning.net/software/theano/library/tensor/index.html
http://deeplearning.net/software/theano/extending/graphstructures.html#op
http://deeplearning.net/software/theano/extending/graphstructures.html
http://deeplearning.net/software/theano/tutorial/gradients.html#tutcomputinggrads
http://deeplearning.net/software/theano_versions/0.8.X/tutorial/using_gpu.html

Tensors
● Tensors – Mathematical objects
● Simply, N-Dimensional Arrays, like numpy.ndarray
● lingua franca in DL frameworks
● Data → Input Tensors → DNN → Output Tensors →

Results
● Clean abstraction, allows use in different scenarios
● DNN sees only tensors, not images, audio, text...

Images to Tensors

A BMP Image

RGB Channels

3D Tensor

Other Examples
● Video – 4D Tensor (A video frame is an image)
● Words – Word2Vec
● Characters – 1-hot embeddings
● Audio – spectrograms .etc

Operations
● Operations on Tensors
● NNs are composition of Operations!
● Could let users implement

– Suboptimal, prone to bugs, developer headaches
– Can’t extend to new hardware and software versions

● Makes sense to support basic and widely used ops
– Add, sub, mul, div, exp, log
– Convolution, pooling, lstm units

Example: Sigmoid layer

Sigmoid = 1 / (1 + np.exp(-1 * (np.dot(w.T,x)))

Computational Graph
● Combine multiple operations
● Graphical representation
● Similar to ASTs (Abstract Syntax Trees)

Need
● Helps to get a bigger picture of the network
● Allows us to run auto-diff on the network
● Helps in allocating resources to get best perf.
● Allows optimizations (two nodes with *2 → one

with *4)
● Encapsulation, clean API
● Orchestration of operations

Make DNNs Learn Again!
● Beefed up backpropagation
● More general, easier to understand
● Calculus on computation graphs
● Chain Rule
● Symbolic differentiation and Autodifferentiation

Symbolic Differentiation
● Analytically find the gradients of each operation
● Chain Rule (and others)

● CAVEAT: Cannot calculate for all fn, too difficult, impoosible

Autodifferentiation
● Another approach to tackling the chain rule.

– Compute the gradient for each Op (grad method)
– Traverse the comp. graph,
– collect gradients for each Op
– Combine to get gradient

● Can be done in both forward and backward
direction

Example

cf. http://colah.github.io/posts/2015-08-Backprop/

INTERMISSION

Aside: Subgradients
● ReLU, Leaky ReLU et al, not differentiable

● Can’t differentiate at x = 0, approximate it!
● Subgrad: approximation to grads, greatest lower bound

Simple Example

Aside II: RNNs
● RNNs have outputs of a layer as the input

– h(t +1) = f(x, h(t))

● How do you run backprop?
– Loop-the-loop
– Multiply over and over again :(

● Results in Exploding / Vanishing Gradients

Backprop on RNNs
● Loop unrolling

● Are we done?
● NO, can still cause under and overflows
● Solution: Gradient Clipping (thresholds)

Time to get dirty*

* with the details ;)

Recap: DL Framework Components

● Components of any DL framework
– Tensors
– Operations
– Computation Graph
– Auto-differentiation
– Fast and Efficient floating pt. Operations, GPU support

● BLAS, cuBLAS, cuDNN

Functions or Classes?
● Should we define Ops as functions or classes?
● Functions → lesser memory footprint → logical mapping
● Classes → better encapsulation

– Metadata like shape, size
– Forward op and backward op have similar acces

● OOP → helps in scaling and extending
● But higher memory footprint
● Memory is cheap, dev time isn’t!
● Classes, FTW

Tensor Object
● Need to convert data to tensors and back
● Efficient storage of arrays
● Meta-data: shape, type, average, min, max
● Splicing and views
● Support for sparse matrices (ex. ReLU and

variants)
● Integrity checks, GPU transfer, Compression

Op class
● Input sanity checks
● Optimized implementation
● Gradient Computation
● Shape of output tensor (sanity checks)
● Implementation in C++ / CUDA
● GPU / CPU?
● Parents and Children Ops – Useful for Computation

graph

Graph Object
● Container class, refs to ops, and tensors
● Graph Traversal routines
● Device allocation and deallocation routines
● Methods to send inputs and get back results from

devices
● Method to run autodiff

autodiff
● Don’t reinvent the wheel
● List: http://www.autodiff.org/?module=Tools
● Some examples in Python:

– CGT: http://rll.berkeley.edu/cgt/
– Autograd: https://github.com/HIPS/autograd
– ad: http://pythonhosted.org/ad/

● Theano and TensorFlow use their own

Multicores? GPUs? Embedded?

● Laptop PC v. JBOGs v. Raspberry Pi
● Different hardware, different strengths
● Power-efficiency, Parallelism, Network Comm.
● Ex. Rpi

– Low Power and Memory
– Has GPU and supports HD video!

● Need to support multiple hardware opaquely!
● Use optimized numerical libraries

http://www.autodiff.org/?module=Tools
http://rll.berkeley.edu/cgt/
https://github.com/HIPS/autograd
http://pythonhosted.org/ad/

BLAS / LAPACK
● BLAS – Basic Linear Algebra Subprograms
● LAPACK – Linear Algebra PACKage
● Written in Fortran or C, highly optimized!

– Sometimes even assembly

● Can exploit multicore capabilities
● NumPy uses them
● Use routines for matrix ops instead of coding them

CUDA , cuBLAS
● CUDA – GPU Programming API
● Can be accessed in C, C++, Python (pycuda)
● Very low level
● Memory management, scheduling upto you
● Can lead to reduced perf.
● cuBLAS – BLAS in GPUs, very similar to BLAS API
● ALT: OpenCL

cuDNN
● Library with DL primitives
● eg. Convolution, LSTMs
● Built on top of CUDA
● Most DL frameworks use this in the background
● High-level, Highly Optimized
● Vanilla CUDA for initialization, cuDNN for compute

RECAP: It’s all connected
● Tensors → For representing data
● Ops → To represent operations

– Tensors → Ops → Tensors

● Computation Graph: Composition of Ops
– Input → Op1 → Op2 → Op3 … → OpN → Output

● Autodiff: generalized backprop
● BLAS / CUDA / cuBLAS / cuDNN

What next?
● Know why your net is not training fast enough
● Go through the dev-docs, theano is pretty good
● DIY DLF, for fun and hopefully profit!
● Chutney: The IDLI DL Library ?

Questions?

Thanks!
● Malai

– For proof-reading the article
– Organizing and moderating this talk

● IDLI – Wonderful group, awesome discussions
● Fred Bastien: Theano Lead Dev
● Colah: InkScape guru _/_
● The DL community

Thanks!
Dankeschon!
Dhanyawaad!

Nandri!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

